FasterMoE

Modeling and Optimizing Training of Large-Scale Dynamic Pre-Trained Models

Jiaao He Jidong Zhai¹ Tiago Antunes Haojie Wang Fuwen Luo Shangfeng Shi Qin Li

Tsinghua University

4, Apr, 2022 @ PPoPP'22

¹Corresponding author

Pre-Trained Models

• The most popular DL model with capability in multiple disciplines.

Reading comprehension

Genome analysis

Computer

vision

Jiaao He (Tsinghua University)

FasterMoE

4, Apr, 2022 @ PPoPP'22

2/25

Trend of Pre-Trained Models: Giant Transformers

Transformer blocks in Bert² (340M Parameters)

- Massive computation for each input.
- Outstanding model capability.

3/25

² Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." (2018).

³Lepikhin, Dmitry, et al. "Gshard: Scaling giant models with conditional computation and automatic sharding." (2020).

Trend of Pre-Trained Models: Giant Transformers

- GShard³ is $1,800 \times$ larger.
 - Significant improvement in model capability is observed.
- While GShard is only $1.5 \times$ deeper, it adopts **Mixture-of-Experts (MoE)** structure, and employs 2,048 experts in every MLP module.

3/25

² Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." (2018).

³Lepikhin, Dmitry, et al. "Gshard: Scaling giant models with conditional computation and automatic sharding." (2020).

MoE: A New Structure to Enlarge Models

• Small models: limited capability

MoE: A New Structure to Enlarge Models

• Small models: limited capability; Dense large models: expensive computation.

MoE: A New Structure to Enlarge Models

- Small models: limited capability; Dense large models: expensive computation.
- Mixture of Experts: Small models, selected by Gate Module.
 - The size of the model is enlarged, thus its capability is stronger.
 - The amount of computation remains small.

Expert Parallelism

• Both experts and training data (tokens) are distributed across all workers.

Expert Parallelism

- Both experts and training data (tokens) are distributed across all workers.
- An all-to-all is performed to send tokens to their desired experts.

Expert Parallelism

- Both experts and training data (tokens) are distributed across all workers.
- An all-to-all is performed to send tokens to their desired experts.
- Another all-to-all sends the experts' answers back into original sequences.

Outline of the Paper

Challenge 1

Stragglers due to load imbalance

Challenge 2

Inefficient coarse-grained operators

Challenge 3

Network congestion

Outline

Outline of the Paper

Challenge 1	\longrightarrow Optimization 1	
Stragglers due to load imbalance	Expert shadowing	
Challenge 2	\longrightarrow Optimization 2	
Inefficient coarse-grained operators	Smart fine-grained sched	
Challenge 3	\longrightarrow Optimization 3	
Network congestion	Topology-aware gate	

Outline of the Paper

Challenge 1	\longrightarrow Optimization 1
Stragglers due to load imbalance	Expert shadowing
Challenge 2	\longrightarrow Optimization 2
Inefficient coarse-grained operators	Smart fine-grained schedule
Challenge 3	\longrightarrow Optimization 3
Network congestion	Topology-aware gate
	\downarrow \downarrow \downarrow
Performance M	lodeling
DDL-Roofline:	Characterization of distributed DL workloads.
	PACMAI

Challenge 1: Imbalanced Assignment

• Expert selection can be severely imbalanced.

Challenge 1: Imbalanced Assignment

• Expert selection can be severely imbalanced.

• The distribution changes between iterations.

Challenge 1: Imbalanced Assignment

• Expert selection can be severely imbalanced.

- The distribution changes between iterations.
- The skew varies a lot throughout the training process.

• Expert 1 is very popular.

- Expert 1 is very popular.
- Worker 1 is a straggler.

• **Shadow** expert 1 by broadcasting its parameters.

Worker 1	
Expert 1	

Worker 2	Shadow
Expert 2	

- **Shadow** expert 1 by broadcasting its parameters.
- It becomes more balanced.

 We select shadow experts before every MoE layer, guided by a performance predictor. (detailed in the paper)

Challenge 2: Inefficient Coarse-grained Operators

Timeline

Worker 0	Communication	All-to-all		All-to-all
	Computation		Expert Computation	
Worker 1	Communication	All-to-all		All-to-all
vvorker 1	Computation		Expert Computation	
Worker 2	Communication	All-to-all		All-to-all
	Computation		Expert Computation	
		L		
			An MoE layer	

• Each MoE layer involves computation between 2 all-to-alls.

~

Jiaao He	(Tsinghua	University
----------	-----------	------------

Challenge 2: Inefficient Coarse-grained Operators

Timeline

Worker 0	Communication	All-to-all	IDLE!	All-to-all
	Computation	IDLE!	Expert Computation	IDLE!
Communication Worker 1 Computation	All-to-all	IDLE!	All-to-all	
	Computation	IDLE!	Expert Computation	IDLE!
Worker 2	Communication	All-to-all	IDLE!	All-to-all
	Computation	IDLE!	Expert Computation	IDLE!

An MoE layer

• There is always some hardware idling.

- *n* steps for *n* workers.
- At time step i, W_i :
 - Sends to $W_{(j-i) \mod n}$
 - Receives from $W_{(j+i) \mod n}$

- *n* steps for *n* workers.
- At time step i, W_i :
 - Sends to $W_{(j-i) \mod n}$
 - Receives from $W_{(j+i) \mod n}$
- Example: 5 workers
 - For W_0 :
 - Receives from W₀

- *n* steps for *n* workers.
- At time step *i*, W_i :
 - Sends to $W_{(j-i) \mod n}$
 - Receives from $W_{(j+i) \mod n}$
- Example: 5 workers
 - For W_0 :
 - Receives from W₀
 - Receives from W₁

- *n* steps for *n* workers.
- At time step *i*, W_i :
 - Sends to $W_{(j-i) \mod n}$
 - Receives from $W_{(j+i) \mod n}$
- Example: 5 workers
 - For W_0 :
 - Receives from W₀
 - Receives from W₁
 - Receives from W₂

- *n* steps for *n* workers.
- At time step *i*, W_i :
 - Sends to $W_{(j-i) \mod n}$
 - Receives from $W_{(j+i) \mod n}$
- Example: 5 workers
 - For W_0 :
 - Receives from W₀
 - Receives from W₁
 - Receives from W₂
 - Receives from W₃

- *n* steps for *n* workers.
- At time step *i*, W_i :
 - Sends to $W_{(j-i) \mod n}$
 - Receives from $W_{(j+i) \mod n}$
- Example: 5 workers
 - For W_0 :
 - Receives from W₀
 - Receives from W₁
 - Receives from W₂
 - Receives from W₃
 - Receives from W₄

- *n* steps for *n* workers.
- At time step i, W_i :
 - Sends to $W_{(j-i) \mod n}$
 - Receives from $W_{(j+i) \mod n}$
- Example: 5 workers
 - For W_0 :
 - Receives from W₀
 - Receives from W₁
 - Receives from W₂
 - Receives from W₃
 - Receives from W₄
 - All data received.

• Take worker 1 for example, expert 1 on it has to process input on worker 0, 1, 2.

- Take worker 1 for example, expert 1 on it has to process input on worker 0, 1, 2.
 - S_i : Worker *i* sends input to worker 1 (as a part of the first all-to-all).

- Take worker 1 for example, expert 1 on it has to process input on worker 0, 1, 2.
 - S_i : Worker *i* sends input to worker 1 (as a part of the first all-to-all).
 - C_i : The input from worker *i* is processed by expert 1 on worker 1.

- Take worker 1 for example, expert 1 on it has to process input on worker 0, 1, 2.
 - S_i : Worker *i* sends input to worker 1 (as a part of the first all-to-all).
 - C_i : The input from worker *i* is processed by expert 1 on worker 1.
 - R_i : Worker *i* retrieves output from worker 1 (as a part of the second all-to-all).

Smart Scheduling: Re-ordering Fine-grained Operations

• Dependencies between S, C, R.

Smart Scheduling: Re-ordering Fine-grained Operations

- Follow Pair-wise Exchange algorithm to organize Ss and Rs.
- Baseline: execute sequentially.

Smart Scheduling: Re-ordering Fine-grained Operations

• Lower the latency: Perform *C* and *R* as soon as possible.

Smart Scheduling: Re-ordering Fine-grained Operations

- To maximize efficiency: (detailed in the paper)
 - Use a group of workers, instead of a single worker, as the granularity.
 - Minimize first S and last R by grouping heuristics.

Challenge 3: Congested Cross-node Connection

• Commonly, workers are in a tree-like topology, with lower upper-level bandwidth.

Challenge 3: Congested Cross-node Connection

- Commonly, workers are in a tree-like topology, with lower upper-level bandwidth.
- With unconstrained expert selection, there is congestion in the slow connections.

Topology-aware Gates

- We design a Topology-aware gate.
 - Limit the number of tokens transmitted through upper-level links.
 - Redirect overfilling tokens to experts in the local node (for better data utilization).
 - Specific gates shall be designed for different cases.

- X-axis: $R_{CC} = \frac{Lat_{\text{computation}}}{Lat_{\text{communication}}}$
- Y-axis: \bar{P} , **Per-accelerator** computation throughput.
- Reference lines:
 - Ideal: Computation and communication are perfectly overlapped.

- X-axis: $R_{CC} = \frac{Lat_{\text{computation}}}{Lat_{\text{communication}}}$
- Y-axis: \bar{P} , **Per-accelerator** computation throughput.
- Reference lines:
 - Ideal: Computation and communication are perfectly overlapped.
 - Semi-ideal: They are performed sequentially.

• Data parallelism: too much communication overhead of gradients for MoE.

- Data parallelism: too much communication overhead of gradients for MoE.
 - Leap beyond semi-ideal by overlapping.

- Data parallelism: too much communication overhead of gradients for MoE.
 - Leap beyond semi-ideal by overlapping.
- Expert parallelism: less communication, but load imbalance.

- Data parallelism: too much communication overhead of gradients for MoE.
 - Leap beyond semi-ideal by overlapping.
- Expert parallelism: less communication, but load imbalance.
- Our optimizations:
 - Shadow relieves load imbalance.

- Data parallelism: too much communication overhead of gradients for MoE.
 - Leap beyond semi-ideal by overlapping.
- Expert parallelism: less communication, but load imbalance.
- Our optimizations:
 - Shadow relieves load imbalance.
 - Smart schedule overlaps communication with computation.

- Data parallelism: too much communication overhead of gradients for MoE.
 - Leap beyond semi-ideal by overlapping.
- Expert parallelism: less communication, but load imbalance.
- Our optimizations:
 - Shadow relieves load imbalance.
 - Smart schedule overlaps communication with computation.
 - Topology-aware gate reduces communication volume.

Implementation Details

O PyTorch **Fast***MoE*

- Based on FastMoE⁴, a PyTorch-based MoE training framework.
 - With modified operators and customized gates.
- Using Megatron-LM⁵ as transformer codebase.
- Open source at https://github.com/thu-pacman/fastermoe

⁴He, Jiaao, et al. "Fastmoe: A fast mixture-of-expert training system." (2021).

⁵ Shoeybi, Mohammad, et al. "Megatron-Im: Training multi-billion parameter language models using model parallelism." (2019).

Systems that support faithfully selecting top-k experts for each token

• FastMoE: Baseline of expert parallelism.

Systems that support faithfully selecting top-k experts for each token

- FastMoE: Baseline of expert parallelism.
- DeepSpeed + ZeRO: Baseline for data parallelism. (by Microsoft)
 - MoE model implemented by single-GPU version of FastMoE.
 - Use ZeRO Stage 3 to fit the model into GPU memory.

Systems that support faithfully selecting top-k experts for each token

- FastMoE: Baseline of expert parallelism.
- DeepSpeed + ZeRO: Baseline for data parallelism. (by Microsoft)
 - MoE model implemented by single-GPU version of FastMoE.
 - Use ZeRO Stage 3 to fit the model into GPU memory.

Systems that require specific expert selection method

- GShard: A state-of-the-art MoE system. (by Google)
 - Limit capacity of each expert, and drop the overfilling input.
 - Ported to PyTorch + NVIDIA with customized gate in FastMoE.

Systems that support faithfully selecting top-k experts for each token

- FastMoE: Baseline of expert parallelism.
- DeepSpeed + ZeRO: Baseline for data parallelism. (by Microsoft)
 - MoE model implemented by single-GPU version of FastMoE.
 - Use ZeRO Stage 3 to fit the model into GPU memory.

Systems that require specific expert selection method

- GShard: A state-of-the-art MoE system. (by Google)
 - Limit capacity of each expert, and drop the overfilling input.
 - Ported to PyTorch + NVIDIA with customized gate in FastMoE.
- FairSeq + BASE Layers: Another state-of-the-art MoE system. (by Facebook)
 - Run a matching algorithm over the input and expert score sheet for perfectly balanced assignment.

Evaluation Setup

Hardware

- johnny cluster: 16 NVIDIA V100 PCIe GPUs in 2 nodes.
- trevor cluster: 64 NVIDIA V100 SXM2 GPUs in 16 nodes.

Evaluation Setup

Hardware

- johnny cluster: 16 NVIDIA V100 PCIe GPUs in 2 nodes.
- trevor cluster: 64 NVIDIA V100 SXM2 GPUs in 16 nodes.

Models

• 4 MoE-Bert and 3 MoE-GPT models at different sizes.

Model name	Size	Layers	Experts	H	α	Cluster
MoE-GPT-S MoE-GPT MoE-GPT-L	0.86B 3.42B 13.7B	12	16	$1024 \\ 2048 \\ 4096$	2	johnny
MoE-BERT-Deep MoE-BERT-Deep-L	1.71B 27.4B	24	16	$\begin{array}{c} 1024 \\ 4096 \end{array}$	2	johnny
MoE-BERT-Wide MoE-BERT-Wide-L	3.27B 13.1B	12	64	$\frac{1024}{2048}$	2	trevor

Case Study of Expert Shadowing

Case Study of Expert Shadowing

- Different experts are shadowed dynamically, according to different input.
 - On average, 19% experts are shadowed.

Case Study of Expert Shadowing

Iterations in layer 12, MoE-BERT-Deep

- Different experts are shadowed dynamically, according to different input. •
 - On average, 19% experts are shadowed.
- End-to-end latency is effectively reduced.
 - Up to $1.97 \times$ speedup in one iteration.

Effectiveness of Smart Scheduling

- Theoretical upper bound is computed by the performance predictor.
 - Up to $1.71\times$

Effectiveness of Smart Scheduling

- Theoretical upper bound is computed by the performance predictor.
 - Up to $1.71\times$
- The schedule provides significant speedup.
 - Up to $1.42 \times$ speedup achieved.
 - The effectiveness varies between models.

Speedup over FastMoE and ZeRO

Speedup over FastMoE and ZeRO

- More than 17× speedup over *DeepSpeed* + *ZeRO* baseline.
- More than 5× speedup over *FastMoE* baseline.

Evaluation

Convergence Speed w.r.t. GShard and BASE Layers

- Both baseline systems take significantly more steps to converge.
- Convergence speed is $1.37 \times$ shorter than *GShard*, and $2.19 \times$ shorter than *BASE Layers*.
- The topology-aware gate makes iterations 9.4% faster.

• MoE models are large and dynamic.

- MoE models are large and dynamic.
- To train the trending pre-trained models more efficiently,
 - Shadow Experts to relieve load imbalance;

- MoE models are large and dynamic.
- To train the trending pre-trained models more efficiently,
 - Shadow Experts to relieve load imbalance;
 - Use Smart Schedule to overlap computation and communication;

- MoE models are large and dynamic.
- To train the trending pre-trained models more efficiently,
 - Shadow Experts to relieve load imbalance;
 - Use Smart Schedule to overlap computation and communication;
 - Design Topology-aware Gates to reduce network congestion;

Jiaao He (Tsinghua University)

- MoE models are large and dynamic.
- To train the trending pre-trained models more efficiently,
 - Shadow Experts to relieve load imbalance;
 - Use Smart Schedule to overlap computation and communication;
 - Design Topology-aware Gates to reduce network congestion;
- All above are guided by the **DDL-Roofline** model.

Thanks and Questions are Welcomed

The End

- Contact: hja20@mails.tsinghua.edu.cn
- Source code: https://github.com/thu-pacman/FasterMoE

