FasterMoE

Modeling and Optimizing Training of Large-Scale Dynamic Pre-Trained Models

Jiaao He Jidong Zhai¹ Tiago Antunes Haojie Wang Fuwen Luo Shangfeng Shi Qin Li

Tsinghua University

4, Apr, 2022 @ PPoPP'22

Pre-Trained Models

• The most popular DL model with **capability in multiple disciplines**.

Background

Reading

Genome analysis

Computer vision

Trend of Pre-Trained Models: Giant Transformers

Background

Transformer blocks in Bert 2 (340M Parameters)

- Massive computation for each input.
- Outstanding model capability.

Jiaao He (Tsinghua University) FasterMoE 5 Apr, 2022 @ PPoPP'22 3/25 3/25

^{2&}lt;br>3 Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." (2018).
3 _{Lepikhin, Dmitry, et al. "Gshard: Scaling giant models with conditional computation and automatic sha}

Trend of Pre-Trained Models: Giant Transformers

Background

MoE: A New Structure to Enlarge Models

Background

• Small models: limited capability

MoE: A New Structure to Enlarge Models

• Small models: limited capability; Dense large models: expensive computation.

Background

Background

MoE: A New Structure to Enlarge Models

- Small models: limited capability; Dense large models: expensive computation.
- Mixture of **Experts**: Small models, selected by **Gate Module**.
	- The size of the model is enlarged, thus its capability is stronger.
	- The amount of computation remains small.

• Both experts and training data (tokens) are distributed across all workers.

Expert Parallelism

Background

- Both experts and training data (tokens) are distributed across all workers.
- An all-to-all is performed to send tokens to their desired experts.

Expert Parallelism

Background

- Both experts and training data (tokens) are distributed across all workers.
- An all-to-all is performed to send tokens to their desired experts.
- Another all-to-all sends the experts' answers back into original sequences.

Outline of the Paper

Challenge 1

Stragglers due to load imbalance

Challenge 2

Inefficient coarse-grained operators

Challenge 3

Network congestion

Outline

Load Imbalance and Expert Shadowing

Challenge 1: Imbalanced Assignment

• Expert selection can be severely imbalanced.

Challenge 1: Imbalanced Assignment

Load Imbalance and Expert Shadowing

- Expert selection can be severely imbalanced.
- The distribution changes between iterations.

Challenge 1: Imbalanced Assignment

Load Imbalance and Expert Shadowing

- Expert selection can be severely imbalanced.
- The distribution changes between iterations.
- The skew varies a lot throughout the training process.

o He (Tsinghua University) FasterMoE 4, Apr, 2022 @ PPoPP'22 7/25

Load Imbalance and Expert Shadowing

Load Imbalance and Expert Shadowing

Load Imbalance and Expert Shadowing

• **Shadow** expert 1 by broadcasting its parameters.

Load Imbalance and Expert Shadowing

- **Shadow** expert 1 by broadcasting its parameters.
- It becomes more balanced.

Load Imbalance and Expert Shadowing

• We select shadow experts before every MoE layer, guided by a **performance predictor**. (detailed in the paper)

PACMAN Jiaao He (Tsinghua University) FasterMoE 4, Apr, 2022 @ PPoPP'22 8 / 25

Challenge 2: Inefficient Coarse-grained Operators

• Each MoE layer involves computation between 2 all-to-alls.

Challenge 2: Inefficient Coarse-grained Operators

• There is always some hardware idling.

Jiaao He (Tsinghua University) FasterMoE 4, Apr, 2022 @ PPoPP'22 9/25 9/25

PACMAN Pair-wise Exchange Algorithm for All-to-all W_0 W_1 $\begin{pmatrix} W_3 \end{pmatrix}$ $\begin{pmatrix} W_2 \end{pmatrix}$ $\,W_4$ • n steps for n workers. • At time step i, W_j : • Sends to $W_{(j-i) \bmod n}$ • Receives from $W_{(j+i) \bmod n}$ Jiaao He (Tsinghua University) FasterMoE 4, Apr, 2022 @ PPoPP'22 10 / 25

Operator Granularity and Smart Schedule

Pair-wise Exchange Algorithm for All-to-all

Pair-wise Exchange Algorithm for All-to-all

Operator Granularity and Smart Schedule

Operator Granularity and Smart Schedule Pair-wise Exchange Algorithm for All-to-all

- n steps for n workers.
- At time step i, W_j :
	- Sends to $W_{(j-i) \bmod n}$
		- Receives from $W_{(j+i) \bmod n}$
- Example: 5 workers
	- For W_0 :

Jiaao He (Tsinghua University) FasterMoE 4, Apr, 2022 @ PPoPP'22 10 / 25

- Receives from W_0
- Receives from W_1
- Receives from W_2
- Receives from W_3

Pair-wise Exchange Algorithm for All-to-all

Operator Granularity and Smart Schedule

- n steps for n workers.
- At time step i, W_j :
	- Sends to $W_{(j-i) \bmod n}$
		- Receives from $W_{(j+i) \bmod n}$
- Example: 5 workers
	- For W_0 :
		- Receives from W_0
		- Receives from W_1
		- Receives from W_2
		- Receives from W_3
		- Receives from W_4
		- All data received.

• Take worker 1 for example, expert 1 on it has to process input on worker $0, 1, 2$.

Smart Scheduling: Fine-grained Task Split-up

Operator Granularity and Smart Schedule

- Take worker 1 for example, expert 1 on it has to process input on worker $0, 1, 2$.
	- S_i : Worker i sends input to worker 1 (as a part of the first all-to-all).

Smart Scheduling: Fine-grained Task Split-up

Operator Granularity and Smart Schedule

- Take worker 1 for example, expert 1 on it has to process input on worker $0, 1, 2$.
	- S_i : Worker i sends input to worker 1 (as a part of the first all-to-all).
	- \bullet C_i : The input from worker i is processed by expert 1 on worker 1.

Smart Scheduling: Fine-grained Task Split-up

- Take worker 1 for example, expert 1 on it has to process input on worker $0, 1, 2$.
	- S_i : Worker i sends input to worker 1 (as a part of the first all-to-all).
	- \bullet C_i : The input from worker i is processed by expert 1 on worker 1.
	- \bullet R_i : Worker i retrieves output from worker 1 (as a part of the second all-to-all).

Smart Scheduling: Re-ordering Fine-grained Operations

• Dependencies between S, C, R .

Smart Scheduling: Re-ordering Fine-grained Operations

- Follow *Pair-wise Exchange algorithm* to organize S s and Rs .
- Baseline: execute sequentially.

Smart Scheduling: Re-ordering Fine-grained Operations

Operator Granularity and Smart Schedule

 \bullet Lower the latency: Perform C and R as soon as possible.

Operator Granularity and Smart Schedule

Smart Scheduling: Re-ordering Fine-grained Operations

- To maximize efficiency: (detailed in the paper)
	- Use a **group of workers**, instead of a single worker, as the granularity.
	- Minimize first S and last R by grouping heuristics.

Challenge 3: Congested Cross-node Connection

Congestion and Topology-aware Gates

• Commonly, workers are in a tree-like topology, with lower upper-level bandwidth.

Challenge 3: Congested Cross-node Connection

Congestion and Topology-aware Gates

- Commonly, workers are in a tree-like topology, with lower upper-level bandwidth.
- With unconstrained expert selection, there is **congestion** in the slow connections.

Topology-aware Gates

• We design a **Topology-aware gate**.

• Limit the number of tokens transmitted through upper-level links.

Congestion and Topology-aware Gates

- Redirect overfilling tokens to experts in the local node (for better data utilization).
- **Specific gates shall be designed for different cases**.

Performance Modeling

Performance Modeling

Performance Modeling

- X-axis: $R_{CC} = \frac{Lat_{\text{computation}}}{Lat_{\text{computation}}}$
- \bullet x axis. $n_{CC} T_{\text{Cat}_{\text{commutification}}}$
• Y-axis: \bar{P} , Per-accelerator computation throughput.
- Reference lines:
	- Ideal: Computation and communication are **perfectly overlapped**.

Performance Modeling

- X-axis: $R_{CC} = \frac{Lat_{\text{computation}}}{Lat_{\text{computation}}}$
- \bullet x axis. $n_{CC} T_{\text{Cat}_{\text{commutification}}}$
• Y-axis: \bar{P} , Per-accelerator computation throughput.
- Reference lines:
	- Ideal: Computation and communication are **perfectly overlapped**.
	- Semi-ideal: They are performed **sequentially**.

• Data parallelism: too much **communication overhead** of gradients for MoE.

- Data parallelism: too much **communication overhead** of gradients for MoE.
	- Leap beyond semi-ideal by *overlapping*.

- Data parallelism: too much **communication overhead** of gradients for MoE. • Leap beyond semi-ideal by *overlapping*.
- Expert parallelism: less communication, but **load imbalance**.

- Data parallelism: too much **communication overhead** of gradients for MoE.
	- Leap beyond semi-ideal by *overlapping*.
- Expert parallelism: less communication, but **load imbalance**.
- Our optimizations:
	- **Shadow** relieves load imbalance.

- Data parallelism: too much **communication overhead** of gradients for MoE.
	- Leap beyond semi-ideal by *overlapping*.
- Expert parallelism: less communication, but **load imbalance**.
- Our optimizations:
	- **Shadow** relieves load imbalance.
	- **Smart schedule** overlaps communication with computation.

- Data parallelism: too much **communication overhead** of gradients for MoE.
	- Leap beyond semi-ideal by *overlapping*.
- Expert parallelism: less communication, but **load imbalance**.
- Our optimizations:
	- **Shadow** relieves load imbalance.
	- **Smart schedule** overlaps communication with computation.
	- **Topology-aware gate** reduces communication volume.

Implementation Details

G PyTorch Fast MoE

- Based on *FastMoE*⁴ , a PyTorch-based MoE training framework. • With modified operators and customized gates.
- \bullet Using Megatron-LM⁵ as transformer codebase.
- Open source at https://github.com/thu-pacman/fastermoe

⁴ He, Jiaao, et al. "Fastmoe: A fast mixture-of-expert training system." (2021). 5 Shoeybi, Mohammad, et al. "Megatron-lm: Training multi-billion parameter language models using model parallelism." (2019). Jiaao He (Tsinghua University) FasterMoE 4, Apr, 2022 @ PPoPP'22 17 / 25

Systems that support faithfully selecting top-k experts for each token

• *FastMoE*: Baseline of expert parallelism.

Systems that support faithfully selecting top-k experts for each token

- *FastMoE*: Baseline of expert parallelism.
- *DeepSpeed + ZeRO*: Baseline for data parallelism. (*by Microsoft*)
	- MoE model implemented by single-GPU version of *FastMoE*.
	- Use ZeRO Stage 3 to fit the model into GPU memory.

Systems that support faithfully selecting top-k experts for each token

Evaluation

- *FastMoE*: Baseline of expert parallelism.
- *DeepSpeed + ZeRO*: Baseline for data parallelism. (*by Microsoft*)
	- MoE model implemented by single-GPU version of *FastMoE*.
	- Use ZeRO Stage 3 to fit the model into GPU memory.

Systems that require specific expert selection method

- *GShard*: A state-of-the-art MoE system. (*by Google*)
	- Limit capacity of each expert, and drop the overfilling input.
	- Ported to PyTorch + NVIDIA with customized gate in *FastMoE*.

Systems that support faithfully selecting top-k experts for each token

- *FastMoE*: Baseline of expert parallelism.
- *DeepSpeed + ZeRO*: Baseline for data parallelism. (*by Microsoft*)
	- MoE model implemented by single-GPU version of *FastMoE*.
	- Use ZeRO Stage 3 to fit the model into GPU memory.

Systems that require specific expert selection method

- *GShard*: A state-of-the-art MoE system. (*by Google*)
	- Limit capacity of each expert, and drop the overfilling input.
	- Ported to PyTorch + NVIDIA with customized gate in *FastMoE*.
- *FairSeq + BASE Layers*: Another state-of-the-art MoE system. (*by Facebook*)

Evaluation

• Run a matching algorithm over the input and expert score sheet for perfectly balanced assignment.

Evaluation

Evaluation Setup

Hardware

- *johnny* cluster: 16 NVIDIA V100 PCIe GPUs in 2 nodes.
- *trevor* cluster: 64 NVIDIA V100 SXM2 GPUs in 16 nodes.

Evaluation

Evaluation Setup

Hardware

- *johnny* cluster: 16 NVIDIA V100 PCIe GPUs in 2 nodes.
- *trevor* cluster: 64 NVIDIA V100 SXM2 GPUs in 16 nodes.

Models

• 4 MoE-Bert and 3 MoE-GPT models at different sizes.

- Different experts are shadowed dynamically, according to different input.
	- On average, 19% experts are shadowed.

Evaluation

- Different experts are shadowed dynamically, according to different input. • On average, 19% experts are shadowed.
- End-to-end latency is effectively reduced.
	- Up to $1.97\times$ speedup in one iteration.

Jiaao He (Tsinghua University)

Effectiveness of Smart Scheduling

- Theoretical upper bound is computed by the performance predictor.
	- Up to $1.71\times$

Effectiveness of Smart Scheduling

- Theoretical upper bound is computed by the performance predictor.
	- Up to $1.71\times$
- The schedule provides significant speedup.
	- Up to $1.42\times$ speedup achieved.
	- The effectiveness varies between models.

Speedup over FastMoE and ZeRO

- More than 17× speedup over *DeepSpeed + ZeRO* baseline.
- More than 5× speedup over *FastMoE* baseline.

Convergence Speed w.r.t. GShard and BASE Layers

Evaluation

- Both baseline systems take significantly more steps to converge.
- Convergence speed is 1.37× shorter than *GShard*, and 2.19× shorter than *BASE Layers*.
- The topology-aware gate makes iterations 9.4% faster.

• MoE models are **large** and **dynamic**.

Conclusion

- MoE models are **large** and **dynamic**.
- To train the trending pre-trained models more efficiently,
	- **Shadow Experts** to relieve load imbalance;

Conclusion

- MoE models are **large** and **dynamic**.
- To train the trending pre-trained models more efficiently,
	- **Shadow Experts** to relieve load imbalance;
	- Use **Smart Schedule** to overlap computation and communication;

Conclusion

- MoE models are **large** and **dynamic**.
- To train the trending pre-trained models more efficiently,
	- **Shadow Experts** to relieve load imbalance;
	- Use **Smart Schedule** to overlap computation and communication;

Conclu

• Design **Topology-aware Gates** to reduce network congestion;

- MoE models are **large** and **dynamic**.
- To train the trending pre-trained models more efficiently,
	- **Shadow Experts** to relieve load imbalance;
	- Use **Smart Schedule** to overlap computation and communication;

Conclus

- Design **Topology-aware Gates** to reduce network congestion;
- All above are guided by the **DDL-Roofline** model.

The End

Thanks and Questions are Welcomed

The End

- Contact: hja20@mails.tsinghua.edu.cn
- Source code: https://github.com/thu-pacman/FasterMoE

