<div class="post_brief"><p>
最近很颓啊。</p>
这题很久之前看过。当时以为是高消就没管。然后开坑之神idy做了之后仔细一想才知道不是。
这题的做法是dp。首先因为边数少所以不用floyd,直接bfs预处理出所有t[i][j]表狼在i,兔子在j的时候狼下一步去哪。然后有一个结论是每一步两个玩意的距离至少缩短1,所以状态是不会有环的,这也是为啥可以不用高消。然后坑点是不能直接开状态队列,因为那不是拓补序。要先把每个点的入度算出来再跑dp。结局是我的代码超长。
#include <cstdio> #include <cstring> #include <algorithm>using namespace std;
struct edge { int t; edge *next; };
#define mkword(x,y) (((x)<<16)|(y)) #define hiword(x) ((x)>>16) #define loword(x) ((x)&0x0000ffff)
const int maxn = 1009; const int maxst = 1000009; const int inf = 0x3f3f3f3f;
int n, m, st, te, deg[maxn], d[maxn], t[maxn][maxn], ind[maxn][maxn]; edge elst[maxn << 1], *ep(elst), *head[maxn]; double f[maxn][maxn], g[maxn][maxn], c[maxn], ans;
inline void addEdge(int u, int v) { ep-> t = v; ep-> next = head[u]; head[u] = ep ++; }
void bfs(int p0) { static int q[maxn]; int hd(0), tl(1); memset(d, -1, sizeof(d)); d[q[0] = p0] = 0; while (hd < tl) { int p(q[hd ++]); for (edge* e = head[p]; e; e = e-> next) if (d[e-> t] == -1) { d[e-> t] = d[p] + 1; q[tl ++] = e-> t; } } for (int p = 1; p <= n; ++ p) if (p == p0) { t[p][p] = p; } else { t[p][p0] = inf; for (edge* e = head[p]; e; e = e-> next) if (d[p] == d[e-> t] + 1 && e-> t < t[p][p0]) t[p][p0] = e-> t; } }
void dp() { static int q[maxst]; static bool iq[maxn][maxn]; int hd(0), tl(1); memset(iq, 0, sizeof(iq)); memset(f, 0, sizeof(f)); memset(g, 0, sizeof(g)); memset(ind, 0, sizeof(ind)); ans = 0; q[0] = mkword(st, te); iq[st][te] = 1; while (hd < tl) { int i(hiword(q[hd])), j(loword(q[hd])), i0, j0; ++ hd; if (t[t[i][j]][j] != j) { for (edge* e = head[j]; e; e = e-> next) { i0 = t[t[i][j]][j]; j0 = e-> t; ++ ind[i0][j0]; int zn(mkword(i0, j0)); if (!iq[i0][j0]) { q[tl ++] = zn; iq[i0][j0] = 1; } } i0 = t[t[i][j]][j]; j0 = j; ++ ind[i0][j0]; int zn(mkword(i0, j0)); if (!iq[i0][j0]) { q[tl ++] = zn; iq[i0][j0] = 1; } } } memset(f, 0, sizeof(f)); memset(g, 0, sizeof(g)); g[st][te] = 1; ans = 0; q[0] = mkword(st, te); hd = 0; tl = 1; while (hd < tl) { int i(hiword(q[hd])), j(loword(q[hd])), i0, j0; ++ hd; if (i == j) { ans += f[i][j]; } else if (t[t[i][j]][j] == j) { ans += f[i][j] + g[i][j]; } else { for (edge* e = head[j]; e; e = e-> next) { i0 = t[t[i][j]][j]; j0 = e-> t; g[i0][j0] += g[i][j] * c[j]; f[i0][j0] += (f[i][j] + g[i][j]) * c[j]; int zn(mkword(i0, j0)); – ind[i0][j0]; if (!ind[i0][j0]) q[tl ++] = zn; } i0 = t[t[i][j]][j]; j0 = j; g[i0][j0] += g[i][j] * c[j]; f[i0][j0] += (f[i][j] + g[i][j]) * c[j]; int zn(mkword(i0, j0)); – ind[i0][j0]; if (!ind[i0][j0]) q[tl ++] = zn; } } }
int main() { #ifndef ONLINE_JUDGE freopen(“in.txt”, “r”, stdin); #endif
scanf("%d%d%d%d", &n, &m, &st, &te); memset(d, 0x3f, sizeof(d)); memset(deg, 0, sizeof(deg)); for (int i = 0; i < m; ++ i) { int u, v; scanf("%d%d", &u, &v); addEdge(u, v); addEdge(v, u); ++ deg[u]; ++ deg[v]; } for (int i = 1; i <= n; ++ i) { bfs(i); c[i] = 1.0 / (deg[i] + 1); } dp(); printf("%.3lf\n", ans);
}